
NASA/CR-2000-210545

ICASE Report No. 2000-39

'_] _h.......ii_.._

Arcade: A Web-Java Based Framework for Distributed

Computing

Zhikai Chen and Kurt Maly

Old Dominion University, Nolfolk, Virginia

Piyush Mehrotra

ICASE, Hampton, Virginia

Mohammad Zubair

Old Dominion University, Nolfolk, Virginia

October 2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

• Email your question via the Internet to

help@ sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2000-210545

ICASE Report No. 2000-39

-- :-%i

_i__ _ ._i_i!i....... _; _

Arcade: A Web-Java Based Framework for Distributed

Computing

Zhikai Chen and Kurt Maly

Old Dominion University, Nolfolk, Virginia

Piyush Mehrotra

ICASE, Hampton, Virginia

Mohammad Zubair

Old Dominion University, Nolfolk, Virginia

ICASE

NASA Langley Research Center

Hampton, Virginia

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

October 2000

Available fi'om tile following:

NASA Center for AeroSpace hffomlation (CASI)

7121 Standard Drive

Hanover, MD 21076 1320

(301) 621 0390

National TectHficalhffomlation Service(NTIS)

5285 Port Royal Road

Spfingfield, VA22161 2171

(703) 487 4650

ARCADE: A WEB-JAVA BASED FRAMEWORK FOR DISTRIBUTED COMPUTING*

ZHIKAICHENt,KURTMALYt,PIYUSHMEHROTRA{,ANDMOHAMMADZUBAIRt

Abstract. Distributedheterogeneousenvironmentsarebeingincreasinglyusedto executeavarietyof
largesizesimulationsandcomputationalproblems.WearedevelopingArcade,a web-basedenvironment
to design,execute,monitor,andcontroldistributedapplications.Thesetargetedapplicationsconsistof
independentheterogeneousmoduleswhichcanbeexecutedonadistributedheterogeneousenvironment.In
thispaperwedescribetheoveralldesignofthesystemanddiscusstheprototypeimplementationofthecore
functionalitiesrequiredto supportsuchaframework.

Key words, meta-computingenvironment,multi-moduleapplications

Subject classification.ComputerScience

1. Introduction. Distributedheterogeneousenvironmentsarebeingincreasinglyusedto executea
varietyoflargesizesimulationandcomputationalproblems.Forinstance,inmultidisciplinaryoptimization,
multipleheterogeneousmodulesinteractwitheachotherto solveanoveralldesignproblem.Typicallythese
modules,consistingofvariousCorFortranprograms,aredevelopedasseparatecodes,e.g.,structuralorflow
analysisof anaircraftconfiguration,andareoptimizedindependently.Thetraditionalpathforintegrating
thesemodules,throughtheuseof scriptsmakestheprocessofspecifyingandoptimizingtheoveralldesign
ofsuchapplications,a longandtediousprocessoftentakingseveralweeks.Theslownessofthisprocessis
mainlydueto theabsenceofa collaborativeenvironmentwhere(i) differentmodulesandtheirinteractions
canbespecified,andwhere(ii) testing,monitoring,andsteeringoftheoveralldesigncanbedonebymultiple
usersfromdifferentdisciplinesconcurrently.In thispaperwedescribeArcade,aweb-basedenvironmentfor
designing,executing,monitoring,andcontrollingdistributedheterogeneousapplications.

A typicalscenariofor developingandexecutingadistributedapplicationisasfollows:ateamofdesign-
erscollaborativelydevelopstheapplicationconsistingof a hierarchicalsetof modules.Thatis,individual
membersaremaderesponsibleforspecifyingthesubmoduleswhiletheprojectleaderisresponsiblefor the
overallintegrationof theapplication,i.e.,connectingtheoutputsof onemoduleto the inputsof another.
Themodulescanrangefromsimplesequentialprograms,to data-parallelprogramscapableof execution
onamultiprocessoror anetworkofworkstations,to morecomplexsubsystemswhicharedefinedhierarchi-
callythroughtheuseof submodules.Preexistingmoduleswhosesourcesarenotavailablemayneedto be
"wrapped"in orderto plugthemintotheoverallapplication.

Oncedeveloped,theapplicationisexecutedin adistributedenvironmentusingaheterogeneousnetwork
ofworkstationsandmultiprocessormachines.Duringtheexecution,teammemberssittingattheirindividual
workstationssimultaneouslymonitortheflowofprogressoftheapplication.Thatis,theteammemberscan
seethecurrentlyexecutingmodulesat anylevelofthehierarchy.Theycanalsoviewtheintermediatedata
flowingbetweendifferentmodulesincludinglargedatasetsusingvisualizationtools.

A teammemberresponsibleforaparticularsubsystemcanchangedatavaluesunderthecontrolofthe
subsysteminorderto steerthecomputationin therightdirection.Theteammembercanalsodynamically

*This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046

while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.

IComputer Science Department, Old Dominion University, Norfolk, VA 23529 ({chen_z, maly, zubair}@cs.odu.edu).

{ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email: pm@icase.edu).

alter the control flow if necessary. For example, in a design cycle, the responsible team member may decide

that a particular module is not affecting the optimization and may bypass the module by using old values

in each cycle. Similarly, the team could decide to use another algorithm and replace a module with another

plug compatible module. Once the execution is complete, team members again examine the final results

using the visualization tools.

The overall goal is to design an environment which is easy to use, easily accessible, portable and pro-

vides support through all phases of the application development and execution. We plan to leverage off of

commodity technologies, such as the Web and Java, to implement various parts of the environment. These

technologies are capable of seamlessly interconnecting disparate hardware platforms running different oper-

ating systems across diverse locations providing an ideal environment for distributed simulation of complex

systems.

In this paper we first describe our overall goals and then discuss the current prototype reporting on

our experiences and problems in implementing the system. The rest of the paper is organized as follows.

In the next section we present some related work. The two following sections describe the overall Arcade

architecture and the current prototype, respectively. The last section focuses on future work and conclusions.

2. Related Work. Several software systems have been developed that make distributed computing

available to an application programmer. These can be distinguished into different categories. The first

category of environments includes systems such as MPI [10], PVM [15], pPVM [9] and JAVADC [5]. All

these environments support distributed computing in varying degrees of generality; however, either they are

not web based or they lack collaborative features. Also, they are mostly suitable for running SPMD programs.

The second category of environments address large distributed heterogeneous codes but are focused on a

single application domain. Examples of such environments include FIDO [16] and MIDAS [13]. However,

both these systems are either hardwired to a specific problem area or are too restrictive. The other major

limitation is that they lack a collaborative environment which would permit different members in a group

to interact with the application at various stages of its design and execution.

The third category of environments which includes IceT [7], Programmer's Playground [6], PRE [14], and

WebFlow [3] supports some forms of heterogeneous distributed applications. The front-end for most of these

systems, is generally some variation of large-grained data flow graphs with modules being triggered when

their inputs are available. In our experience, we have found that to more control structure than provided

by such data-flow based systems is required to easily express heterogeneous applications. For example, in a

multidisciplinary optimization code, the optimization cycle would have to be embedded within a module in a

system which only supports data-flow rather than being explicit at the outer level. Also, these systems mainly

concentrate on different aspects of the infrastructure required for managing the execution and interaction

of the modules making up the application whereas the goal of the project described here is to build an

integrated framework for all phases of the design and execution of distributed heterogeneous applications.

Note that systems such as Tango [1] and Habanero [11] focus on interactive collaboration between users.

Such technologies would be useful in the specification and the monitoring phases of the framework being

proposed here. However, such collaborative systems do not provide any support for the management and

steering of the execution of distributed applications.

3. Arcade Architecture. The architecture of the proposed framework is divided into three tiers as

shown in Figure 1.

First Tier: The first tier consists of the Java applets providing the following interfaces to the users:

ORB

RC Object/ RC Object/ . • . RC Object/

User Modules User Modules User Modules

F_C. 1. Web Object Infrastructure for the Proposed Framework

• Application design interface for the hierarchical specification of execution modules and their de-

pendencies. The system will provide support for multi-user specification of hierarchical modules

including the specification of module interactions and database access for persistent storage of re-

sults.

• Resource allocation and execution interface for specifying the hardware resources required for the

execution of the application. The resources could be chosen by the users or by the system based

on the current and predicted loads of the system and the characteristics of the application. The

choice could be made statically or dynamically during the execution of the application. The system

will also allow the users to choose the input/output files and any command line arguments for the

modules prior to starting the execution.

• Monitoring and steering interface for monitoring and controlling the execution of the application.

Multiple users will be allowed to monitor the run both the flow of execution and the intermediate

results. However only the subteam responsible for a particular submodule will be allowed to steer

its execution by either modifying data values or replacing plug-compatible modules.

Middle Tier: The middle tier consists of logic to process the user input and to interact with application

modules running on a heterogeneous set of machines. The overall design is a client-server based architecture

in which the Interface Server interacts with the front-end client to provide the information and services as

needed by the client. When the user requests the execution of an application, the Interface Server launches an

Execution Controller (EC) which manages the overall execution of the application by firing up user modules

on the specified resources as and when required. Other objects in the middle tier handle any monitoring and

steering requests from the client.

Third Tier: The third tier consists of Resource Controllers (RC) and the User Application Modules.

Each active resource in the execution environment is managed by an RC which is responsible for launching

modules on the resource and also for interacting with the Execution Controller in order to keep track of the

executing applications.

The main advantage of a three-tier system is that the client or the front-end becomes very thin, thus

making it feasible to run on low-end machines. Also, since most of the logic is embodied in the middle tier,

the RCs can be kept lightweight thus keeping the additional loads on the executing machines to a minimum.

The Web Object approach we are taking will coexist with the regular HTTP server. In contrast to

approaches with CGI-to-CORBA gateway or HTTP-to-IIOP gateways, this approach is easier to imple-

ment [12]. Here, the HTTP server will provide users Web pages with Java applets. These applets will

interact with the CORBA Interface server using CORBA-IIOP protocol. The applets can use static IDL-

generated client stubs or a Dynamic Invocation Interface to interact with the CORBA Interface server. The

CORBA Interface server will interact in similar manner with other objects on the ORB bus (see Figure 1).

4. Arcade Prototype. We have implemented the three-tier system, as described in the last section,

in a prototype Arcade system. The current system allows single users to specify applications through either

an offline script-based system or through a visual interface. The resources required for the execution have

to be statically specified by the user. The current prototype supports only file-based interaction among the

modules. The system manages the execution of the modules on a network of workstations in a single domain.

The execution status of the application can be monitored by multiple users simultaneously.

4.1. Application Specification. In our framework a distributed application consists of a collection

of heterogeneous modules (application codes from different disciplines). We are targeting applications where

these modules are very coarse-grained. A typical distributed application requires that these modules be

executed in a specific order and possibly on different machines. For certain problems a set of modules may

need to be executed iteratively until a desired optimization criteria is reached. To be able to support a wide

variety of distributed applications, we support the following types of modules:

• Normal Module: This is the basic module in our framework and is used to represent the executable

parts in the applications. A normal module is identified by its executable code and its input/output

file requirements.

• I/Module: This module provides a mechanism for testing the value of a condition. The truth-value

of the condition determines whether the modules in the then-block or the else-block (if present) will

be executed.

• Loop Modules: These modules allow a set of "internal" modules to be iteratively executed. There

are three kinds of looping modules: For module for a predetermined module of iterations, While

module: where the iteration condition is tested at the beginning of the loop, and Repeat module in

which the condition is tested at the end.

• SPMD Module: A module representing a SPMD program written using one of the message passing

interface like MPI, PVM, etc. This module, depending on its specification, gets executed on a

dedicated parallel machine or on a cluster of workstations.

• Hierarchical Module: An abstract module representing a subgraph, i.e., a recursively defined collec-

tion of modules.

In the current prototype there are two ways to specify a distributed applications: script-based or visual.

In the next two subsections we describe these two specification mechanisms.

Script-BasedSpecification.Arcadesupportsscript-basedofflinespecificationof a distributedhet-
erogeneousapplication.Thesyntaxofthescriptissimpleallowingusersto specifythedifferentmodules,as
describedabovealongwiththepropertiesofthesemodules.In particular,theusermustspecifythefollowing
propertiesfor eachNormal Module:

• Module Name

• Module Directory: the directory in which the executable and input/output files are to be found.

• File Name: the name of the executable.

• Parameter: command line arguments to be used for execution.

• Machine Name: on which the module is to be executed.

• Input Names and Files: a globally unique name for each input along with the associated file name.

• Output Names and Files: a globally unique name for each output along with the associated file

name.

Similarly, the user can specify the properties of the other types of modules.

Figure 2 shows a screenshot of the script-based specification of an artificial application whose structure

is shown graphically at the bottom. In the script-based system, the interconnections between the modules

are defined based on the globally unique names for the inputs/outputs of the modules. Thus, for example

as shown in the top half of Figure 2, Module M2 has two outputs: m2_outl and m2_out2 while Module M3

has two inputs: m2_outl and m2_out2 and Module M_ has one input: m2_outl defining the interconnections

shown graphically in the bottom half of the figure.

Visual Interface. The visual specification applet allows a user to graphically specify a heterogeneous

application. The objective is to support a visual specification which is: (i) intuitive to build, (ii) can be

used for visual monitoring, and (iii) works with the Web. There exist a number of visual language projects

- see [4] for a classification of many of these projects. However, most of the projects which support program

specification are either focussed on fine-grained programming or support only data-flow applications. That

is, they do not provide any integrated, intuitive approach to specify control constructs in coarse-grained

distributed applications.

We have implemented a Java applet that provides a visual specification interface and addresses some

of these issues (see Figure 3). The visual specification can be seen as a graph where a node represents a

module and the arcs represent the flow of data between the modules. It is easy to see how a data flow-

based application can be modeled using such a system. It becomes a little trickier to accommodate control

structures such as conditionals and iterations, in particular when we want to use the visual specification for

monitoring too. We accommodate if-modules and loop-modules by restricting their bodies to be hierarchical

modules which are specified through a separate window. Thus, the modules labeled Then-block and Else-

block represent hierarchical modules abstracting the then and else part of if construct respectively. Similarly,

the module Body, represents the loop body of the while loop. Restricting the bodies of control structures

to hierarchical modules eases the task of specification and allows the application to be visually represented.

However, it does not provide an integrated view of the whole application in a single window, i.e., the body

of a control structure is always shown in a separate window.

4.2. Application Execution. Each application is internally represented by a Java Project object.

The Project object, consisting of a vector of modules objects, is the central object in our framework. All the

information related to the application, both static and dynamic, is stored within this object. The Project

object is a complex object that is shared by all the processes of the middle tier (see Figure 1) and supports

methods that are used by these processes. When the user requests the execution of an application, the User

iii!!!i!!!!!i!_......

__ __iii_!i_!i_i!_i_iii_!_i_i_iii!iii_iiiii!_iiii_iiiii!_iiiii_ii_iiii_!_iii_i_iii_i!iiii_i!i_i_iiii_i_i_ill_iii!iil!!iiii_iii!i_ii!ii

iii! !i! !i ! ! iiiiiiiiiii iii i iiiiiiiiiiiiiiiiiiiiii! !! i iii
i_ _iill !_ii !iiiiiiiiiiiiiiii _i_! iii!iii

_ii_i_iiiiiiiiiiiii_iiiii_i_iiii_ii_!_ii_iiiiiiiiiiiiiiiiiiiiiii_i_iii_ii_`_i!ii!i!iii!!!iiiiiiiiii

i!!ii!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i!i_!_i!i!i!i!i!i!i!i!i!i!i!i!ii_!_!!_i!!_!_iiiiiii!i_ii_

i i_!_!!ii_!_i_ !_!_!!_!_i__i_!_!i_i_!_i_,_!i_!_i_!__!_i!__ _!_i_!_!i,i___ iiiiiiiiiiiiiiiiiiiiiii

iii_ii_i_iii_i_!_i_!ii_i_i_ii!_!i!_i_i!!_i_!i_ii_i_i_!!iii!ii!iii!iii_ii!i_i!ii!ii!i!!!i!!!ii!ii!!!ii!i!!ii!!ii!iii
!i!_!!_!_!_i_i_!_iiii_i!i_i_i_i_i_!_iii_i_i!_i_i_i_i_iiii_iii_i_!_iii_iiiiiiiiiiiiiiiiiiiiii_

iiiiiiiiiiiiiiiiiiiiiiii!_iii_!_i_i_i_i! _i_!!ii_iiiii _ !_i_!__!iii_ i_i_i_iii_i_i_ii

iiiiiiiiiiiiiiiii_iiiii_iii_i_ii_ii_i_i_i_i!_!i_!_i!ii_i_i_!ii_!ii!!_i_i_ii_!i_i_!_ii

ili_i

F_G. 2. Script-based Specification

Interface Server passes the corresponding Project object to the Execution Controller (EC). It is the EC's

responsibility to manage the execution and the interaction of the modules specified within the application.

For executing the application, the EC needs to call some initialization methods of the Proj ec_ object

followed by its execution method. For example, if the application has been specified using the script-based

mechanism, then the dependencies (which had been specified implicitly) have to be explicitly computed and

 iiiiiiiiiiiii ° i iiiiiiiiiiiit..............................I..... i iiiiiiiiiiiii iiiiiiiiiiiii

_iiiiiiiiiiiiiiii

_iiiiiiiiiiiiiiii

_iiiiiiiiiiiiiiii

F_G. 3. Visual Specification Interface

stored. The EC then executes the modules using a data-flow approach. That is, it launches the execution

of a module as soon as its inputs are available. Note that the interaction in the current system is based on

files. Thus, the EC has to ensure that the inputs for a module are in the files as specified in the project

specification. That is, if a module produces a file which is physically different from the file specified as

an input file by a dependent module the EC copies the file over before execution is started. Here we are

assuming that the application is executing in a single domain with a global file system so that copying files

does not raise any security issues.

The system requires the user to specify the resource on which each module is to be executed in the

application specification. Thus, to execute a module, the EC contacts the Resource Controller (RC) on the

specified resource and requests that the module be executed. The RC starts the execution and monitors it.

The RC notifies the EC when the module finishes execution. The EC determines the modules that were

dependent on this module and launches them if all of their inputs are ready. Once all the modules have

finished execution, the user can be notified.

A monitoring applet allows users to monitor the execution status of the application. Two different

interfaces supported: text-based and graphical. The text-based interface indicates the time a module execu-

tion begins and the machine being used for the execution. As a module finishes execution, the completion

time is also indicated. The graphical interface is available only for visually specified applications and uses a

pre-determined color-scheme to indicate modules which have finished execution, are currently executing and

are awaiting execution.

5. Future Work. In the last two sections we have described our overall design of the Arcade system

and the state of the current prototype. This is work in progress and we are working to improve and extend

several aspects of the system. We discuss some of these issues here.

The specification interface allows both a script-based and visual specification of the application. However,

both of these interfaces provide only restricted support for specification. We are experimenting with several

ways to extend the specification script, in particular examining how we can use a full programming language

such as Java as the specification mechanism. Also, the current interface only displays scripts which have

beeneditedoffline- wearebuildinga scripteditorsothat theapplicationcanbespecifiedfromwithinthe
framework.Thevisualinterfacewill alsobeextendedto makeit morerobustandintegrated.Currently
therearenomulti-userspecificationcapabilities.Weareextendingthesystemto includetheconceptof
teamsincludingmanagersandsubteamsandsupportcollaborativespecificationof applications.

Tomakeourframeworkeasyto use,wewouldlikeit to providesupportformassaginginputandoutput
fromdifferentmodules.Thisissometimesnecessaryto maketheoutputofa modulecompatiblewith the
inputof theothermodules.Onewayaroundtheproblemis to requirethemoduledesignerto makethe
necessarychangesin thecode.However,weareexaminingmechanismswhichwill allow"datatranslators"
to bespecifiedat ahighlevelandautomaticallygeneratedsothat datacanbetransformedbeforetheyare
communicatedfromonemoduleto another.Weareexploringtwodifferentwaysof doingthis. First,we
areinvestigatingtheuseofSmartFiles[8],asystemwhichsupportsthespecificationof meta-datato define
datacontainedin traditionalfiles.Second,wearealsoinvestigatingatoolwhichprovidessimilarfacilities,
however,thistoolusesadatabaseasanintermediaryfor storingandtransformingthedata.

Anotherissueisresourcemapping.In thecurrentsystem,werequiretheuserto staticallyspecifythe
resourceonwhicheachmoduleis to execute.Ourhopeis to includeanintelligentresourcemapperwhich
candynamicallydeterminetheoptimalmappingofamodulegivenits requirementsandthecurrentloadsof
thesystem.Weareinvestigatingseveraloptions,includingincorporatinga systemsuchasAppLeS[2]into
Arcade.

Thetwomajorcomponentsofsecuritythat areofinterestto usare:authentication,andaccesscontrol.
Theseissuesaremanageableif werestrictourframeworkto onedomain.However,it is notclearhowto
addresstheseissueswhenworkingacrossorganizations.Themainreasonis theexistenceof multiplenon-
inter-operablestandardsthat aretransport-dependent.In thecurrentprototypewehavenotaddressedthe
multi-domainsecurityissues.

Anothermajorchallenge,besideslookingat thespecificinterfacesandcontrollers,is to architectthe
frameworksuchthat it ispossibleto plug-and-playdifferentinterfacesandcontrollers.Wearehopingthat
theCORBA-basedapproachthat wearetakingforthefutureextensionsto theframework,will makethis
taskeasier.

6. Conclusion.In thispaper,wehavedescribeda integratedWeb-Javabasedenvironment,Arcade,
for thedesign,execution,monitoringandsteeringof heterogeneousapplicationsin distributedexecution
environment.Wehavedescribedthe currentprototypeof the systemwhichis capableof executingdis-
tributedapplicationsonanetworkof resourcesina singledomain.Wearecurrentlyexpandingthesystem
to incorporateall the facilitiesenvisionedin ourarchitecturein a phasedapproach,anapproachwhere
the drivingforceis the userof the system.Moreinformationon the Arcadesystemcanbe foundat
http://www.icase.edu/arcade.

REFERENCES

[1] LUKASZBECA,GANGCHENG,GEOFFREYC. FOX,TOMASZJURGA,KONRADOLSZEWSKI,MAREK
PODGORNY,PIOTRSOKOLOWSKI,TOMASZSTACHOWIAK,ANDKRZYSZTOFWALCZAK,TANGO --

A Collaborative Environment for the World-Wide Web, http://www.npac.syr.edu/projects/tango.

[2] F. BERMAN, R. WOLSKI, S. FIGUEIRA, J. SCHOPF, AND G. SHAO, Application-level Scheduling on

Distributed Heterogeneous Networks, Supercomputing'96, November 1996.

[3] D. BHATIA, V. BURZEVSKI, M. CAMUSEVA, G. Fox, W. FURMANSKI, AND G. PREMCHANDRAN,

WebFlow -- A visual programming paradigm for Web/Java based coarse grain distributed computing,

Concurrency: Practice and Experience, Java Special Issue, 9(6) (March 1997), pp. 555-578.

[4] M. BURNETT AND M. BAKER, A Classification System for Visual Programming Languages, Technical

Report 93-60-14, Department of Computer Science, Oregon State University, Corvallis, OR 97331,

1993 (revised 1994).

[5] Z. CHEN, K. MALY, P. MEHROTRA, P. VANGALA, AND M. ZUBAIR, Web-based Framework for Dis-

tributed Computing, Concurrency: Practice and Experience, Java Special Issue, 9(11) (November

1997), pp. 1175-1180.

[6] K.J. GOLDMAN, B. SWAMINATHAN, T.P. MCCARTNEY, M.D. ANDERSON, AND R. SETHURAMAN,

The Programmers' Playground: I/O Abstraction for User-configurable Distributed Applications, IEEE

Transactions on Software Engineering, 21(9) (September 1995), pp. 735-746.

[7] P. GRAY AND V. SUNDERAM, IceT: Distributed Computing and Java, Concurrency: Practice and Ex-

perience, Java Special Issue, 9(11) (November 1997), pp. 1161-1168.

[8] M. HAINES, P. MEHROTRA, AND J. VAN ROSENDALE, SmartFiles: An O0 approach to data file interop-

erability, in Proceedings of OOPSLA 95, the Tenth ACM Conference on Object-oriented Programming

Systems, Languages, and Applications, Austin, TX, pp. 453-466, October 1995.

[9] K. MALY, S. KELKAR, AND M. ZUBAIR, Scientific Computing Using pPVM, International Conference

on Parallel Processing, 2 (August 1994), pp. 201-205.

[10] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version 2.0, Technical

Report, Computer Science Department, University of Tennessee, Knoxville, TN, 1997.

[II] NCSA Habanero Project, http://www.ncsa.uiuc.edu/SDG/Software/Habanero/.

[12] R. ORFALI AND D. HARKEY, Client/Server Programming with Java and CORBA, John Wiley _ Sons,

1997.

[13] J.C. PETERSON, Multidisciplinary Integrated Design Assistant For Spacecraft (MIDAS),

http://mishkin.jpl.nasa.gov/MidasA_age.

[14] Product Realization Environment, http://www-collab.ca.sandia.gov/pre.

[15] V. SUNDERAM, PVM: A Framework for Parallel Distributed Computing, Concurrency: Practice and

Experience, 2(4) (December 1990).

[16] R.P. WESTON, J.C. TOWNSEND, T.M. EIDSON, AND R.L. GATES, A Distributed Computing Environ-

meAt for Multidisciplinary Design, 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Panama City, FL, AIAA 94-4372, September 7-9, 1994.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 2000 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Arcade: A web-Java based framework for distributed computing

6. AUTHOR(S)

Zhikai Chen, Kurt Maly, Piyush Mehrotra, and Mohammad Zubair

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2000-39

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2000-210545
ICASE Report No. 2000-39

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

Proceedings of WebNet 2000.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations

and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and

control distributed applications. These targeted applications consist of independent heterogeneous modules which

can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the
system and discuss the prototype implementation of the core functionalities required to support such a framework.

14. SUBJECT TERMS

meta-computing environment, multi-module applications

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

14

16. PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

